2022-01-21
目前,各种电储能技术大体可分为以下3类:物理储能(如抽水蓄能、压缩空气储能、飞轮储能等),电化学储能(如锂离子电池、铅炭电池、钠硫电池、全钒液流电池等)和电磁储能(如超导电磁储能、超级电容器等)。
今天简单介绍基于非物理储能的电储能技术。
(1)电化学储能
目前的电力系统中已大量采用用各种技术成熟的可充放电电池系统作为电化学储能体系,目前常用储能电池技术体系主要包括四大类:锂离子电池、铅炭电池、液流电池、钠硫电池。
其中,锂离子电池和铅蓄电池因为产业化基础好,具有明显的成本优势,因此仍是目前电化学储能市场的首选。根据相关统计,国内电化学储能项目应用集中在用户侧,随着风力发电、光伏发电的爆发式增长,引入电池储能系统有利于提升风电、光伏利用率,增大收益。由于风力、光伏发电的高峰期与用户用电的高峰期在时间上是错开的,因此引入储能系统,可明显提升用户收益;分布式燃气发电系统同样可以引入电池作为储电装置,削峰填谷,改善系统稳定性;增加备用,增加系统抗干扰力;功率支撑,改善系统供能稳定性。从系统发电侧到用户用电侧,电池系统可以平滑负荷,减小对备用容量的需求,提高收益;实现不同发电方式之间的耦合;系统故障时,可帮助重启系统,恢复正常运行;改善功率分布,保证用户的供电质量;作为应急和备用,解决短时间的供电短缺;即插即用,及时进行能量补充。
(2)电磁储能
2.1超导电磁技术
超导电磁储能原理是工作时把能量存储在流过超导线圈的直流电流产生的磁场中,其特点是效率高(>97%)、响应快(ms级)、无污染等,在超导状态下线圈的电阻可以不计,因此能耗非常小,可以用来进行长期无损耗的储能。但是超导线圈需要在温度极低的液体中工作,因此成本太高,同时也会增加系统的复杂性。目前在电力系统中的应用主要用于提高系统的暂态稳定性,改善电能质量和风电、光电等随机性强的间歇式新能源并网特性。
2.2超级电容器
超级电容器的原理是依据双电层原理直接存储电能,介于常规电容器和电池之间,其充放电可逆性非常好,优于电池,可进行数十万次的反复充放电循环。针对超级电容器响应快、循环寿命长的特点,和电池能量密度高、循环寿命短的特点,将二者结合形成混合储能系统,取长补短。在风电、光伏发电系统中,一般使用超级电容器优先充放电,同时充当“功率缓冲器”,平抑尖峰及往复性风电功率波动,延长蓄电池的使用寿命;能量密度大的蓄电池,作为系统中的主要能量来源,用于平抑风电功率的长期稳态波动,调节超级电容器荷电状态,从而快速响应风电功率的下次波动。这样的混合搭配既避免了单独采用蓄电池储能造成的功率超额配置,又避免单独采用超级电容器储能所引起的成本增加,有效降低了储能系统的投资成本。
锂电池由正极和负极组成,由电解液隔开和连接。电解质可以导电,但它是电子的绝缘体。在充电状态下,阳极内含高浓度的锂,阴极内含锂。在放电过程中,锂离子离开阳极,通过电解液迁移到阴极。锂电池的电极通常是固体材料。离子类型可以通过其电解质来区分,电解质可能是
2022-04-28铝壳电池的使用注意事项1、不要用手触摸测量工具的测量表面,防止手上的汗水等潮湿的污垢污染测量表面,使铝壳生锈。2、不要将量具与其他量具及金属材料混用,以免与量具碰撞。3、当铝壳电池表面存在毛刺时,需要使用净毛刺去除并进行测量,否则会磨损测量工具,影响
2022-03-25如果没有副反应的锂电池电解液,锂离子电池可以实现无限循环。然而,由于常规碳酸酯电解液不稳定的表面上的正电极和负电极,电解质的分解表面上的正电极和负电极在使用过程中,导致电池容量持续下降。研究较多的分解反响电解质表面上的正电极和负电极,但大部分的测试实
2022-10-18铝壳电池是一种由铝合金材料制成的电池壳,对于方形锂离子电池来说非常重要。其采用铝壳包装,因为铝壳比钢壳更轻、更安全。铝壳电池常见设计有方角和圆角两种,常见材质为铝锰合金,还含有Mn、Cu、Mg、Si、Fe等成分,并且这些成分对铝壳电池来说非常重要,C
2022-03-22一、聚合物软包锂电池的储存当聚合物软包锂电池存储时间超过一周时,电池电量应为50%左右的充电容量。电池完全充满有可能会影响其容量损耗。将电池放置于室温环境下,两到三年后将失去约20%的容量。将相同的电池以佳存储电压储存并放入冰箱,大约需要10年才能
2022-04-13锂电池管理系统的主要模块有充电模块、数据采集模块、均衡模块、功率计算模块、数据显示模块和存储通信模块等,起到电池管理和保护作用。锂电池管理系统利用微机技术和检测技术,动态监测电池的运行状态,精准计算出电池的剩余电量还有多少,以便对电池进行充放电保护,
2022-05-17